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Abstract

Intrusion and damage assessment is an important step after intrusion detection. The goal

of this research is to shorten time of constructing a coherent intrusion trace and assessing the

damage through automatic extraction and coordination of audit data and features for intrusion

and damage assessment. In this project, we develop the System-Fault-Risk framework to define

cause-effect chains of intrusions as intrusion profiles and also classify intrusions. We create a

new attack-norm separation approach to developing detection models for building cyber sensors

monitoring and identifying intrusion data characteristics at various points along the path of an

intrusion cause-effect chain. Mean and autocorrelation data characteristics of cyber attack and

norm data are discovered to enable the definition of attack data models and norm data models

which are in turn used to build detection models for cyber sensors. The testing results the

superior performance of detection models based on the attack-norm separation approach to that

of detection models based on two conventional approaches of signature recognition and anomaly

detection.
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Objectives

As soon as an intrusion (cyber attacks) into a computer and network system is detected, it

is necessary to construct a coherent trace of the intrusion and assess the extent (e.g., location and

severity) of the intrusion and associated damages. Intrusion detection triggers intrusion and

damage assessment that in turn provides the basis for intrusion reaction to recover the system

and prevent future reoccurrences of the same intrusion. Without intrusion and damage

assessment, it is difficult to determine corrective actions that will not only recover the system but

also prevent future reoccurrences of the same intrusion. Although the system can be recovered to

a pre-intrusion state by simply loading backup system data and reinstalling system programs, this

recovery method leaves the system vulnerable to reoccurrences of the same intrusion that can

immediately bring the system back to a compromised state. Hence, intrusion and- damage

assessment is an important step after intrusion detection.

Intrusion and damage assessment requires the identification of system data and intrusion

data characteristics from many different locations, times and sources. Hence, large amounts of

system data from many different locations, times and sources must be processed to extract a

small amount of useful information for constructing a coherent intrusion trace and assessing the

damage. Currently we are counting on system administrators to manually perform intrusion and

damage assessment. However, the manual approach to intrusion and damage assessment has

serious drawbacks. First of all, system administrators may not have time to perform the intrusion

and damage assessment thoroughly or at all. Secondly, many intrusions are programmed and

thus proceed at a fast machine speed. However, humans perform the intrusion and damage

assessment at a much slower speed. To stop the further development of an intrusion while

system administrators are performing the intrusion and damage assessment,- system
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administrators usually have to temporarily control the intrusion by disabling a network service,

disconnecting a computer, and so on. Those actions of temporary intrusion control interrupt

system services to legitimate users, which may not be desirable. To sustain system services

under the impact of an intrusion, we must shorten time to construct a coherent intrusion trace and

assess the damage so that we can quickly react to the intrusion for system recovery and intrusion

prevention. Automatic intrusion and damage assessment is required to significantly shorten time

to perform the intrusion and damage assessment.

Thus, we focus on intrusion and damage assessment; especially automatic extraction and

identification of audit data, features and characteristics. The goal of this research is to shorten

time of constructing a coherent intrusion trace and assessing the damage through automatic

extraction and identification of audit data, features and attack data characteristics.

We take a directly diagnostic assessment approach; specifically, we collect useful audit

data from computer and network systems from different locations, times and sources and extract

mathematical/statistical features from the data. Then we monitor and identify

mathematical/statistical features of audit data, which quantitatively characterize various

intrusions along with their phases, locations and damages, resulting in the quick assessment of

intrusions and damages. Hence, distinctive attack data characteristics play a central role in

.quickly directing the assessment of intrusions and their damages. Three important elements of

this directly diagnostic assessment approach are:

1. Kinds of audit data that contain useful information for intrusion and damage assessment,

2. Mathematical/statistical features that quantitatively and uniquely characterize intrusions

and their damages, and
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3. Quick detection and identification of mathematical/statistical attack data characteristics

for the directly diagnostic assessment of intrusions and their damages.

Therefore, the objectives of this research are to investigate, develop and test the

following:

"* Audit data that contain useful information for intrusion and damage assessment to

reveal kinds of audit data (i.e., activity, state and performance data) in computer and

network systems and their theoretical properties (i.e., stationarity, statistical

distribution, independence, covariance and autocorrelation) in normal and intrusive

conditions of system operation;

"* Mathematical/statistical data features that can be automatically extracted from audit

data to show data characteristics that quantitatively and uniquely characterize various

intrusions and their damages, and thus direct intrusion and damage assessment;

"* Analytical techniques that will enable the efficient incorporation of

mathematical/statistical attack data characteristics into directed statistics that will

quickly detect distinctive attack data characteristics for intrusion and damage

assessment.

This research on audit data, features and attack data characteristics lays the scientific

foundation for developing analytical techniques of quick intrusion and damage assessment.

Hence, through the work on audit data, features, characteristics, and analytical techniques, we

establish a coherent set of scientific theories and analytical techniques that enable the automatic

extraction and identification of audit data and attack data characteristics for intrusion and

damage assessment.



13

In Chapter 1, we present our work on cyber attack classification and attack profiling to

capture cause-effect chains of cyber attacks, which in turn can be used to correlate results of

cyber sensors monitoring and identifying attack data characteristics at various points of attack

cause-effect chains. In Chapter 2, we describe our methods of attack experimentation and data

collection which provide audit data for our investigation. In Chapter 3, we present audit data,

their mathematical/statistical features, and attack and normal use (norm) data characteristics

which are discovered from the collected data of cyber attack and norm activities. In Chapter 4,

we present a new attack-norm separation approach to detecting and identifying cyber attacks

based on attack and norm data characteristics. In Chapter 5, we provide the method of building

cyber sensors for cyber attack detection and identification according to the attack-norm

separation approach along with the testing results.
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Chapter 1. Cyber Attack Classification and Profiling

In this chapter, we describe our research methodology for defining a cause-effect chain of

a cyber attack.

1. Introduction

We established a System-Fault-Risk (SFR) framework to capture resource-process

interactions, activity-state-performance interactions, and asset-vulnerability-threat interactions in

the cause-effect chain of an attack (intrusion) propagation. Initially, we classified existing known

cyber attacks and developed twelve attack profiles using the SFR framework. We identified

observable points for cyber attack detection in each attack profile and defined data, features and

characteristics at each observable point. We generalized a list of data, features and characteristics

for cyber attack detection from those identified in the twelve attack profiles.

2. Related Work

Existing audit data include mainly network traffic data (data packets) from networks and

computer audit/log data from host machines. Network traffic data and computer audit/log data

capture activities in computer and network systems. Network traffic data and computer audit/log

data are mainly system activity data. Our past work [1-13] has shown the effectiveness of system

activity data for intrusion detection. For intrusion and damage assessment, system activity data

may not be sufficient to reveal impacts and damages caused by intrusions [14-16]. A

sophisticated intrusion can go through several phases, such as reconnaissance, scanning for

vulnerabilities, gaining access, maintaining access, further attacks, and covering tracks [12]. An

intrusion often produces a cause-effect propagation chain in a computer and network system.
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Activities of an intrusion-the cause and the start of the cause-effect propagation chain-directly

act on certain assets in a computer and network system and may bring those assets into a

compromised state with degraded or discontinued performance. The compromised state and

performance of those assets may in turn interrupt the state and performance of other associated

assets. As a result, the effects of the intrusion propagate throughout a part or the entire body of

the computer and network system. For example, an intrusion may directly interact with a

network application program and bring it into an error state that the kernel of the operating

system cannot handle and thus becomes stalled, which in turn causes the system crash, the

discontinued services of other programs in the system, and other consequences.

To fully assess an intrusion and its damages, intrusion and damage assessment must

uncover the cause-effect propagation chain produced by an intrusion. System activity data

contain information about the cause in the cause-effect propagation chain. System state and

performance data reveal the state and performance of assets (e.g., processes, CPU, memory, data

files, and communication links) in a computer and network system, and thus contain information

about the rest of the cause-effect propagation chain following the cause. That is, system state and

performance data should play an important role in intrusion and damage assessment. Hence, if

intrusion detection based on system activity data is to detect the cause in the cause-effect

propagation chain, intrusion and damage assessment is to reveal the entire cause-effect

propagation chain. In other words, intrusion and damage assessment extends the detection of

changes in system activity (as we see in intrusion detection) to the detection of changes in not

only system activity but also system state and performance. In addition, changes in system

activity, state and performance must be correlated to reveal the entire cause-effect propagation

chain. Hence, the proposed research will be carried out according to the concept that intrusion
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and damage assessment is to detect and correlate changes in system activity, state and

performance, especially changes from normal conditions to intrusive conditions of system

operation.

Therefore, we have expanded audit data to include system state and performance data

along with system activity data for intrusion and damage assessment. In this report, we use the

term "audit data" to refer to system activity, state and performance data.

Audit data come with large amounts. Not all information contained in audit data is useful

for intrusion and damage assessment. Since some changes in system activity, state and

performance are common in both normal and intrusive conditions of system operation,

information that is useful in distinguishing between normal and intrusive conditions of system

operation is important for intrusion and damage assessment and needs to be extracted from audit

data.

Existing work on intrusion detection [12] has shown many pieces of information in

system activity data that are useful in detecting intrusions through changes in system activity.

For example, information from network traffic data, such as the destination port, source port,

source IP address, TCP control bits, TCP sequence number, timestamp, IP fragment length, Type

of Service (TOS), IP header length, commands, machine codes and file names in data payload,

has been used in intrusion signatures for intrusion detection. For another example, types of

commands, system call and audit events from computer audit/log data have been used in building

normal activity profiles for detecting anomalies and thus intrusions.

However, little is known about what information about system state and performance is

useful to reveal intrusion effects or what changes of system state and performance are induced by

various intrusions. Hence, we have conducted research to identify information about system
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activity, state and performance that is useful to reveal cause-effect propagation chains of

intrusions.

3. System-Fault-Risk Framework

In this section we describe the System-Fault-Risk (SFR) framework for classifying cyber

attacks. The SFR framework incorporates a cause-effect chain into its design. In keeping with

fault modeling theory, our classification is ordered in terms of cause and effect. The overall

incident begins with a threat, followed by an attack. A threat is composed of the three columns:

objective, propagation and attack origin. The attack includes action, vulnerability, asset, and

state and performance effects. Additionally, the first six columns indicate the cause, while the

last two the effect.

We identified a list of computer and network assets that are involved and affected in

intrusions by analyzing existing known intrusion scenarios [17-22] and reviewing existing

frameworks and analysis of computer and network vulnerabilities [23-27]. Computer and

network assets include hardware and software assets, such as CPU, memory, data files,

programs, routers, communication links, and so on. We defined operation, state and performance

attributes of each identified asset according to the design specification of the asset and its

operation. The operation, state and performance of an asset form a cause-effect chain for that

asset. An operation on the asset changes the asset state that in turn affects the asset performance

to serve its user.

As shown in Figure 1, the elements involved in the cause-effect chain of a cyber attacks

are sorted into the categories: objective, propagation, attack origin, action, vulnerability, asset,
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state effects and performance effects. These categories make up an incident. The incident

encompasses the two parts: threat and attack, and a cause-effect chain.

b means of from an use a by e po in a on an causin that exhibit

Objective Propagation Attack Origin Action Vulnerability Asset State Effects Performance
Effects

Spying Human Local Probe Configuration Network Availability Timeliness

Professional Remote (Single Specification
Crimes Autonomous Source) scan /Design System Integrity Precision

Remote
Terrorism (Multiple Flood (Single implementation Process Confidentiality Accuracy

Source) Source)
Corporate Flood (Multiple (More specific) Data None (allowed None (allowed

Rivalry Source) action action
Cracking Authenticate User

Vandalism Bypass
Voyeurism Spoof

Any Read
Copy

Termination
Create

Processes
Execute

Steal
Modi
Delete

Misdirect
Eavesdro

Figure 1.1. System-Fault-Risk framework.

The columns in Figure 1 show some examples for each category of each element. A more

comprehensive or even specialized list of elements in each category can be created. We merely

show some examples. Additionally, entries under each column can be modified or extended as

cyber attacks evolve. We include further details of the SFR framework in our paper [28].

4. Attack Classification

The proposed framework can be used in many situations. For example, anyone designing

an ID solution to protect against a subset of attacks can classify them using our framework and

quickly reveal commonalities and differences within the set. Or, consider designing an ID
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solution to protect against a specific type of attack, such as DoS attacks. With this framework we

can list all known DoS attacks, and exploit their similarities in an effort to generalize these types

of attacks; Thereby providing a basis for detecting a novel attack that fits into the classification

of a DoS attack. The framework provides a tool for simplifying this type work.

Table 1.1. Attack classification table.

Attack Perf ormance
Name Objective Propagation Attack Origin Action Vulnerability Asset State Effect Effect

Remote Spcfcto/
UDP Storm Any Human Remote Flood pecification / Network Availability Timeliness

(Single Source) Design
Slarme Cracking Autonomous SRemote Copy Implementation Process Integrity Accuracy

Crakin Auoomu (Single Source)

Slammer Cracking Autonomous Local Execute Specification System Integrity Accuracy
Worm Design

Corporate
Poison Rivalry, Human Remote Specification / Availability, Timeliness,

ARP Cracking, (Single Source) Misdirect Design Network Integrity Accuracy

Vandalism
Half Life Remote Availability,Buffer Vandalism (Single Source) Terminate Implementation Process Confidentiality Timeliness

Overflow Vadls(SnlSore
NMAP Remote Probe, Specification / Network Confidentiality None
Scanner Any Human (Single Source) Scan Design

EZPublish Any Human Remote Bypass, Implementation Data Confidentiality NoneZublish Any_ Human (Single Source) Steal
Dictionary Any Human Local Steal Specification / Process Availability, Precision,

PDesign Confidentiality Accuracy

Meteor FTP Cracking Hum(an Remote Terminate Implementation Process Availability Timeliness
N~etbus Remote Integrity,NTbusa Any Human Remote Bypass Implementation System Integrity None
Troj an (Single Source) ___________ Confidentialit

TCP Reset Any Human Single Source Terminate Specification / Network Availability, Timeliness
Design Integrity

Crosshsite Any Human Remote Bypass, ImpData, Integrity,
Scripting (Single Source) Steal plementation Process Confidentiality None

Process Remote
Table Any Human (Single/Multiple Flood Implementation System Availability Timeliness

Source)

Apache Web Any Human Remote Flood Implementation System, Availability Timeliness
Server (Single Source) Flood Implementatio Data Aviailtimlns

Chat Server Non-ChabuSeer mcous Human Multiple Source Misuse Implementation Network Availability TimelinessAbuse malicious
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We classified a set of example attacks used in our research to demonstrate one use of the

SFR framework. From Table 1, we extract common details among our subset of attacks to aid in

our understanding. Then, as we discover characteristics of attacks in our ongoing research, we

compared those characteristics with those of similar attacks within the framework [29].

5. Attack Profiling

To derive the data observations of activity, state and performance changes that can help

in detecting an attack while it is progressing along its cause-effect chain, the elements of a cyber

attack in the SFR framework are enlarged in an attack profile, which includes an explicit

description of the cause-effect chain along with observations of activity, state and performance

changes. The method of attack profiling is explained in our paper and a thesis on the topic [30,

31]. Here we give an example using the attack profile for the Apache Denial of Service attack.

Based on activity-state-performance changes, observation points can be selected such that

monitoring the observation points will be useful in detecting the attack. An observation point

could be an activity, a state change or a performance impact anywhere along the cause-effect

chain for the attack shown in Figure 2.
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computers/networks, feature is a measure from the data, such as individual observation, mean,

variance, probability distribution, covariance, auto-correlation, dependency, etc. The

characteristic of a given feature enables the distinction of an attack from normal system

behavior, such as shift, trend (i.e., cyclic and seasonal), drift (i.e., upward and downward),

intermittent spike or bump, change (i.e., step change, slope change, sine wave, and square wave),

etc. Thus, a one-to-one mapping can be created between an observation point and its
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corresponding Data-Feature-Characteristic. For example, for the observation points of the

Apache attack, Table 2 indicates their corresponding data, feature and characteristic.

Table 1.2. Apache DOS observable points as well as attack data, features and characteristics at

these points.

OBS Location Data Feature Characteristic

A 11 HTTP GET message header size EWMA Step increase

12 HTTP GET message header size EWMA Step increase
with same DEST IP

B 11 Similarity score of filenames in EWMA Step increase
consecutive HTTP GET messages

12 Similarity score of filenames in EWMA Step increase
consecutive HTTP GET messages

with same DEST IP
C l1 Inter-Arrival Time of HTTP GET EWMA Step decrease

messages from same SRC IP
12 Inter-Arrival Time of HTTP GET EWMA Step decrease

messages from same SRC IP with
same DEST IP

D 11 Ratio of (Web server memory EWMA Step increase
usage/Sum of all other processes

memory usage)
E 1 Ratio of (Web server CPU EWMA Step increase

usage/Sum of all other processes
CPU usage)

1i Ratio of count of HTTP EWMA Step increase
GET/POST messages

12 Ratio of count of HTTP EWMA Step increase
GET/POST messages to/from

same IP
G 11 Difference in arrival times of GET EWMA Step increase

and corresponding POST HTTP
messages

12 Difference in arrival times of GET EWMA Step increase
and corresponding POST HTTP

messages to/from same IP
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6. Summary

In this chapter we outline the SFR framework, attack classification, and attack profiling

methods to define data, features and characteristics of a subset of known attacks. Cause-effect

chains of attacks derived from such work will enable the correlation of results from cyber

sensors automatically monitoring and identifying attack data characteristics at various locations

of attack cause-effect chains. Our investigation of cyber sensors is presented in the following

chapters. See Attachments A and B for two published/accepted papers with more details

describing the work in this chapter.
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Chapter 2. Attack-Norm Separation Approach

Cyber attacks on computers and networks exploit vulnerabilities in the information

infrastructure and pose threats to online transactions, critical operations such as control of power

supply, and many other activities that rely on this infrastructure. There are a number of defense

mechanisms to protect computers and networks from such cyber attacks. These mechanisms

generally serve one of three purposes: prevention, detection, or reaction [1-4]. Prevention

mechanisms, such as firewalls, control or limit access to a computer and network system.

Prevention raises the difficulty in launching attacks, but cannot completely block attacks from

especially determined, organized, skilled attackers. Detection mechanisms monitor activities on

computers or networks to identify the activities of an ongoing attack. Reaction mechanisms

control the further spreading of an attack and its impact, then trace and diagnose the attack to

determine its path, cause, and consequences, and finally take actions to recover systems and

correct problems along the cause-effect path. This effort focuses on detection mechanisms, and

presents a new approach to cyber attack detection

1. Conventional Approaches

Most of cyber attack detection systems fall into two conventional cyber detection

approaches-Signature recognition and Anomaly detection [1-2]. The description of each of these

approaches is provided below.

1.1 Signature Recognition

A signature of an attack represents the characteristics of the attack and is extracted either

by human analysts or automatically discovered through data mining of computer activity data
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collected under attack and normal operating conditions [1, 4]. Attack signatures are stored and

used in a cyber attack detection system to find matches of the signatures. If a signature is

present, the system detects an attack. For example, three incorrect passwords can be used as a

signature of a password-guessing attack. Thus, a detection system monitors the number of

consecutive login failures, and compares it with the signature to detect this attack. Signature

recognition [1] fails if an attack is novel and thus its signatures are unknown.

1.2 Anomaly Detection

In this approach, any large deviation from normal behavior is considered as a cyber

attack [2]. For example, to detect a masquerader a norm profile is constructed for the normal user

and any large deviation by the masquerader from the norm profile will be detected as an attack.

An anomaly detection [3] technique can detect a novel attack if it shows a large deviation from

the norm profile. However, an irregular normal activity may produce a large deviation and thus a

false alarm. Hence, anomaly detection has not gained much practical use in the cyber attack

detection arena due to the high workload associated with many false alarms.

1.3 Shortcomings of Conventional Approaches

Ye and Farley [4] discuss the following shortcomings of the signature recognition and

anomaly detection approaches. Existing attack detection systems mostly use network traffic data

to monitor activities on networks and audit/log data to monitor activities on computers. Since

attacks may occur in an intermittent manner, skipping any data packet on a network or any event

on a computer presents the risk of missing a critical step of an attack. On the other hand, the
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continuous monitoring of all network data packets and computer events requires processing large

volume of data and thus presents a challenge in the computational efficiency of cyber detection

systems.

Neither of the two approaches (signature recognition and anomaly detection) requires

both attack and norm models of cyber data. Neither the signature recognition nor the anomaly

detection performs the separation of attack data and norm data by filtering out norm data from

the observed data mixture of attack and normal user activities to address the problem of the

weakened attack or norm characteristic in the mixed data. The mixture of attack data and norm

data or presence of norm data in the attack data may weaken the distinctive characteristics of

attack data and/or norm data, resulting in poor detection performance of signature recognition

and anomaly detection that rely on only one model or the characteristic of one data element,

attack data or norm data.

Furthermore, existing signature recognition and anomaly detection techniques are mostly

developed empirically, rather than based on the scientific understanding of the attack and normal

data. In fact, there exists little scientific knowledge of attack and normal data in the field of

cyber attack detection.

Another shortcoming of current solutions to cyber attack detection is in their reliance on

only activity data on computers and networks without state and performance data. The execution

of a user's process (an activity, which may be an attacker's activities) on a resource changes the

state of that resource, which in turn affects the performance of the process. This state and

performance change may propagate to other resources and processes. Thus, state and

performance data are parts of the cause-effect chain or network induced by an attack, and can be

helpful in attack detection.
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2. Attack-Norm Separation Approach

2.1 Overview

Let us consider attack data as a signal to detect and normal user data as noise mixed with

the signal in cyber space. Then, there exists a mapping between cyber attack detection and signal

detection in the physical space. To overcome the shortcomings of the two conventional

approaches, a new attack-norm separation approach has been developed [4] to base the attack

detection on the principles of signal detection in the physical space, which employ noise

cancellation to improve the signal-to-noise ratio of the mixed signal-noise data before signal

detection. This approach performs three important steps for attack detection. First, the models of

attack and normal user (norm) data are defined. Secondly, the norm data is filtered out from the

observed data (mixed attack and norm data when an attack occurs), using the norm model.

Finally, the attack is identified in the residual data, using the attack model.

For further analysis, let us study the cuscore model [5] developed for detecting a sine

wave signal buried in random noise that fluctuates around the level of T in the physical space.

The cuscore model considers the following noise and signal models [4-5]:

Norm model: y, = T + ato (2.1)

Attack model: y, = T + 8 sinx, + at (2.2)

where ato and at are white noise components. The cuscore is [4]:

Q Ta)or, (y, -T)( ) - T sin x, = T (y, -T)sin x,. (2.3)

The yt in each case represents the time series input data, xt is the series of values for the sine

component of the attack signal, rt is the rate of signal change and 3 represents the time step
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involved in the sine wave. Here noise cancellation is performed through (y,-T) based the norm

model, and signal identification is performed by correlating the residual data from (y-T) to the

rate of signal change, rt, specifically, sin xt based on the signal model.

A collection of attack detection models are then constructed, which cover different

attacks occurring in various norm environments. Each cyber attack detection model performs the

monitoring and processing of only a small amount of specific data which manifest certain

characteristics of attack and norm. Hence, each model is efficient, accurate, and adequate in

detecting a special data characteristic of a given attack in a certain norm environment. A

comprehensive knowledge of cyber attack and norm data characteristics will establish a solid,

scientific foundation of cyber attack detection to overcome the shortcomings of existing

empirical techniques.

2.2 Data, Features, Characteristics and Detection Models of Cyber Attack and Norm

An attack detection model based on the attack-norm separation approach requires a

thorough, scientific understanding of cyber attack data and norm data. As stated earlier, since

most existing work on cyber attack detection is empirical in nature, we currently have little

scientific knowledge of cyber attack and norm data characteristics. Hence, it becomes imperative

to obtain the scientific understanding of cyber attack and norm data characteristics to enable the

new approach.

Three elements need to be defined for a cyber attack in a given norm environment to

build an attack detection model: data, features, and characteristics [4]. A characteristic of cyber

attack or norm is defined on a feature of a data variable. Data must be relevant to cyber attack
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detection, and may include data variables representing activity, state performance changes of

computers and networks. A feature is a measure from an individual data observation or multiple

data observations. Features may address mathematical, statistical, spatial, temporal, or causal

properties of data observation(s) (e.g., such statistics as mean, variance, correlation,

autocorrelation, transition probability, and others). A characteristic is a change on a given feature

that enables the distinction of cyber attack from cyber norm. Characteristics may be shift (e.g.,

step change), intermittent spike or bump, drift (i.e., upward and downward), trend (e.g., slope,

sine wave, square-wave, cyclic, and seasonal change), etc. Table 2.1 illustrates an example of

these three elements and associated signal detection models in the physical space for the radar

detection of a special object in the air, and in cyber space for the detection of the Denial of

Service (DoS) attack [4].

Figure 2.1 illustrates these three elements along with a signal detection model. In Figure

2.1, raw data (e.g., network traffic data) collected from computers and networks go through data

processing or screening to obtain a given data variable (e.g., the intensity ratio of packets for the

web server to all packets) from which the feature (e.g., an arithmetic calculation of the sample

average) is extracted using a feature extraction method. The signal detection model incorporates

and monitors the characteristic change of attack data from norm data on the feature to detect the

characteristic change of cyber attack from norm and decide if a cyber attack is present in the

mixed data of attack and normal activities.
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Collected Data pre-processing Processed Data

data

Feature Extraction

Signal Detection Model 4
Decision (Characteristics of attack Feature

D s and norm data in the Feature
model)

Figure 2.1 Data, features, characteristics, and signal detection models in the attack-norm

separation approach.

Table 2.1. Examples of data, features, characteristics, and signal detection models in the physical

and cyber spaces.

Element Physical Space Cyber Space

Data Image data UDP Datagrams sent/sec

Feature Color and shape Paul wavelet

Characteristic Color is blue and shape is Spike
round

Signal Detection Model A rule-based model: if Cuscore model for spike
color is blue & shape is
round, then signal
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3. Summary

This chapter introduces a new attack-norm separation approach to cyber attack detection

and identification in comparison with two conventional approaches of signature recognition and

anomaly detection. More details can be found in [4]. See Attachment C for a published paper

with more details describing the work in this chapter.
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Chapter 3. Collection of Cyber Attack and Norm Data

We execute a number of attacks on Windows-based computer networks and collect

activity, state and performance data on attacker and victim computers as well as the network. We

also collect activity, state and performance data on the same computer network in normal active

use or inactive conditions. This chapter describes these attack and norm activities along with

data collection.

1. Attack and Normal Use Activities

The attacks considered in this study include NMAP, Ettercap, Hardware Key logger,

Nessus, Software Key logger, Remote dictionary, Root Kit, Apache, War (FTP), Process Table

and DoS massive input traffic. The norm activities are Web browsing and Text editing. A total of

eleven attacks on the background of two norm activities are tested to verify the attack detection

performance. Hence, thirteen different activities are run on a testbed of a computer network to

collect the data. This set of thirteen activities contains eleven attacks and two normal activities.

A list of all these activities is given in Table 3.1. Each of these activities is described in detail

and also the methodology for running each activity is explained.
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Table 3.1. A list of attack and normal use activities.

Number Activity name Type
1 NMAP Attack
2 Ettercap Attack
3 Hardware Key logger Attack
4 Nessus Attack
5 Software key logger Attack
6 Remote Dictionary Attack
7 Root Kit Attack
8 Apache Attack
9 War(FTP) Attack
10 Process table Attack
11 DoS Massive input Traffic Attack
12 Web Browsing Norm
13 Text editing Norm

1.1 NAAP Port Scan

NMAP is primarily used to find open ports on a computer as well as software and the

operating system running on those ports [1]. It first probes each port on the computer to find if

the port is open. Once it finds open ports, it will interrogate the port with a number of protocols

in an attempt to determine the service provided by the port. Often, NMAP can determine the

software and its version that is running.

1.2 Ettercap

Ettercap is one of the ARP poison attacks [2]. It can be used to redirect network traffic

through an attacker's computer. This will allow the attacker to see even encrypted traffic. When

started, Ettercap will send out an "ARP storm". This ARP storm consists of a series of ARP

requests; one goes out to every IP address on the current subnet. Although noisy, this is an

efficient method to determine which computers are currently on the network. When instructed to

start poisoning, Ettercap will send out spoofed ARP-replies about every 10 seconds. Victim
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constantly receives ARP responses containing IP address of other computers on the network, and

with attacker's MAC address instead, and updates its ARP table accordingly. After that, network

traffic sent by all computers within the victim network goes through the attacker's machine.

Ettercap automatically pulls out usernames and passwords. It also has the ability to filter and

inject network traffic.

1.3 Hardware Key Logger

The keykatcher 64K mini plugs in between the back of the computer and the keyboard

[3]. It intercepts all the keystrokes. Users will apply their own unique password to their

keykatch. When this password is typed in, a menu will appear on the screen inside whichever

text-editor they are currently using (such as notepad). This menu has options to display all the

recorded keystrokes, to search through its memory looking for web-site URLs that were visited,

as well as the ability to delete all keystrokes from memory.

1.4 Nessus

Nessus is an automated security auditor [4]. Given a range of computers to scan, it will

create a report detailing the security vulnerabilities of each computer. Nessus can test for

numerous vulnerabilities. Plug-in are released all the time for Nessus, enabling it to find more

vulnerabilities.

1.5 Software Key Logger

Windows Key logger 5.0 will "trap" system calls [5]. System calls are methods that user-

space programs can call in order to ask the Operating System to perform some action on the

user-space program's behalf. Software key loggers trap system calls related to keyboard events.
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Every time a key is pressed, the trapped system call will record the keystroke to a file for later

viewing.

1.6 Remote Dictionary

Tscrack 2.1 is the software to perform this attack. It attempts to discover the

administrator's password on a windows computer that has terminal services (or remote desktop)

enabled [6]. The attacker supplies it with a dictionary of passwords to try. Most accounts will

lock-out after about three incorrect login attempts. However, the administrator's account should

never lock-out.

1.7 Root Kit

A Root Kit is like a Trojan and allows an attacker to take control over the computer [7].

It is comparable to a trojan on steroids. Unlike a trojan, a Root kit will alter the operating system

in order to hide itself. Root Kit development for windows has been increasing in pace and in

complexity.

1.8 Apache

An attacker could open a few connections to an Apache server and force the server to

dedicate more and more memory to these connections [8]. Eventually Apache will either crash,

or its performance will noticeably degrade.

1.9 War (FTP) Buffer Overflow

Warftpd contains a buffer overflow that leaves the room for 512 bytes of data payload for

the ftp command, USER, which is not validated correctly [9]. Metasploit 2.4 is used to remotely

overrun the buffer and open a bind shell to remotely control the victim computer.
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1.10 Process Table

Fork-bombs have been around for a long time [10]. A process may accidentally (or

intentionally) fall into a loop where upon each iteration, a new process is spawned. These new

processes take up an enormous amount of resources, and in particular, clog the process-table

with hundreds of new entries. Winfb.pl is a file that opens up copies of the windows calculator

repeatedly. It ends up opening 101 calculators, which causes a significant load on the computer.

1.11 DoS Massive Amount of Traffic

Trinoo is capable of producing a distributed denial of service attack [11]. The Trinoo

master controls an army of Trinoo zombies. An attacker logs into the Trinoo master and issues

the command to attack a victim computer. The attack consists of sending massive amounts of

network traffic to consume and clog the network bandwidth. Communication between the

attacker and the master is done over TCP and is not encrypted. Communication between the

Trinoo master and the Trinoo zombies is done through UDP, and is also not encrypted. However,

a password is used for authentication.

1.12 Web Browsing

In this norm activity a user browses the World Wide Web (www) using the Internet

Explorer and perform a set of pre-defined web search using the Google website. The same sets of

websites are searched in each run of the activity to make the norm activity as consistent as

possible. However, the user's natural running pace may not be exactly the same from one run to

another run.
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1.13 Text Editing

In this norm activity a user types a paragraph of text data in the M.S word application

continuously for a specific period of the data collection time. The user types in the same text data

for each run to make the activity consistent.

2. Procedure for Running Attack and Norm Activities

Three runs are carried out for data collection of each attack. Table 3.2 shows the three

runs of data collection. The first run comprises of first keeping the machine idle for 10 minutes

and then running the attack for the duration of completing the attack. The second run comprises

of keeping the machine idle for 10 minutes, followed by running the Web browsing (norm

activity) for 10 minutes and then running the attack along with the Web browsing activity for the

duration of completing the attack. The third run comprises of keeping the machine idle for 10

minutes, then running the Text Editing activity (norm activity) for 10 minutes and then running

the attack along with the Text editing activity for the duration of completing the attack. Hence,

the second and third runs are based on the scenario in which an attack occurs while a user is

doing a normal activity on a computer. The first run gives the data for comparing the attack

condition with the idle condition and extracting the attack features and characteristics. The

second or third run provides the data to compare each of the two norm conditions, Web

Browsing and Text Editing, with the idle condition for extracting the norm features and

characteristics. The second or third run also provides the data to test if the sensor models

produce any false alarms in the condition of a norm activity and how early the sensor models

detect an attack from the data mixture of the attack and norm activities.
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Table 3.2. Three runs of data collection.

Run Data collection time in minutes
Idle data Norm activity data Pure attack (Attack &

Web Browsing Text Editing data Norm) data
Runl 10 min - W
Run2 10 min 10 min -_W
Run3 10 min 10 min - W

"W" in Table 3.2 is the duration for which each attack takes to complete and it is dependent

upon the running time of each attack.

From Table 3.2 we see that a total of 11 (attacks) * 3 (runs) combinations of data

collection are carried out with each attack having three sets of data collected, one for each run.

Each norm activity is run for every attack to ensure that there is a continuous data stream of

norm data followed by the attack & norm data for testing the sensor models. Also the data sets of

a norm activity from different runs can be used to ensure that the extracted norm features and

characteristics are robust regardless of possibly different paces in different runs of the norm

activity.

3. Data Collected

The data in this study is from the data log of activity, state and performance changes

collected in attack and norm conditions from a victim computer using the Windows Performance

Objects utility. The data log contains on average 1000 to 1200 variables which are related to

many computer objects such as Cache, Memory, Network Interface, System etc. An example of

performance variables is Process (_Total)\ Page Faults /sec. A page fault occurs when a thread

refers to a virtual memory page that is not in its working set in main memory. An example of

activity variables is Network Interface packets/sec which indicates the number of packets sent
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and received through the network interface card. An example of state variables is Memory

\Available bytes which measures the amount of memory space available.

4. Summary

Executing attacks and normal use activity allows us to collect the data necessary to

investigate intrusion and damage assessment techniques. We have included in this chapter a

description of our attack and normal use activities. In the next chapter we present the steps we

take to analyze this data and extract what is necessary and sufficient for our investigation.
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Chapter 4. Mathematical/Statistical Features and Characteristics of Cyber Attack and

Norm Data

From the work outlined in previous chapters, we have a set of activity, state and

performance variables and their time-series data in different normal and intrusive conditions of

system operation. Because these audit variables capture useful information about system activity,

state and performance, they capture not only intrusions, but their effects and damages in entire

cause-effect chains. Therefore, the use of information from these audit variables allows us to

perform intrusion and damage assessment instead of simply intrusion detection. In this chapter,

we report our analytical studies of extracting mathematical/statistical features as well as attack

and norm data characteristics from the collected data.

1. Introduction

Many features may be useful to discover the distinctive characteristics of attack and norm

data, e.g., probability distribution, mean, autocorrelation and wavelet signal strength. This

project focuses on the mean and autocorrelation features of cyber attack and norm data for

building sensor models of cyber attack detection and identification. Our analysis of a

mathematical feature, wavelet signal strength, is supported in the related ARDA-funded effort.

The description of the wavelet feature can be found in our final report for the ARDA-funded

effort.

To discover the mean and autocorrelation features of the data, statistical analysis,

including Mann Whitney U test and autocorrelation, is applied to both attack and norm data. The

data are first preprocessed with all variables that contain only zeroes or non-varied entries

screened out. The aforementioned Mann Whitney U test and Autocorrelation analysis are
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implemented to the pre-processed data which are time series data observations. Rank Sum for

Mann Whitney U test and Degree of Autocorrelation for Autocorrelation test are obtained. With

the selected features for differentiating the attack and norm, the attack and norm data models are

constructed. More specifically, for the variables that have a distinction in Mann Whitney result,

the statistical mean of the attack or norm data is used as its attack or norm data model. For

variables with difference in degree of Autocorrelation between attack data and norm data, the

ARIMA time series analysis is used to build an attack or norm data model. Both attack and norm

data models are then used in cuscore statistic detection models for cyber attack detection and

identification. The following sections provide more details in the discovery of statistics-based

data, features and characteristics of attack and norm data. Figure 4.1 shows the process of

discovering data, features and characteristics of cyber attack and norm data and building cuscore

detection models. This chapter describes mainly the discovery of data, features and

characteristics of cyber attack and norm data. Chapter 5 provides the description of building

attack and norm data models as well as Cuscore detection models.
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Raw Data- Windows Removing zero and Processed data-
Performance Objects unvaried variables Non zero anddata~unare (100120iablevaiale

Detection model -detect Feature - Rank Feature
characteristic mean difference and Sum and Degree of extraction -Mann
change in autocorrelation pattern + Autocorrelation are Whitney and
(using ARIMA time series model) calculated Autocorrelation

Analysis

Figure 4.1. Process of discovering data, features, characteristics and building detection models

for the attack-norm separation approach.

2. Pre-Processing

Two steps are carried out in the pre-processing stage of data analysis. They are 1)

screening zeros and 2) screening unvaried variables because these variables cannot be used for

finding any useful information about the pattern of data. Both the steps are discussed in detail

below.

2.1 Screening Zero Values

Raw data collected from the performance log go through screening so that all the

variables with observation values containing only zeros are eliminated from further analysis. In
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addition, this step removes the first ten observations of each variable to eliminate the unstable

warm-up effect at the beginning of data collection.

2.2 Screening Unvaried Variables

The data set after screening out the variables with all zero values is examined to remove

any variables that do not show any change of values in the observations. Such variables are not

useful for cyber attack detection and are thus removed. The above preprocessing steps are done

using statistical software, Statistica. Typically out of the 1000-1200 variables collected only 300-

500 variables remain after preprocessing.

3. Statistical Analysis

This section provides the rationale for selecting Mann Whitney U test and

Autocorrelation [1] as the statistical analysis to be performed on attack and norm data, and also

provides the brief description of each statistical analysis. Descriptive statistics of data are often

examined as a part of discovering characteristics of any particular data. Mean and

autocorrelation are among the most popular ones.

We use a test of mean difference on data of a variable to detect a change in average with

a statistical significance between idle data and attack data to discover attack data characteristic.

Mann Whitney U analysis is chosen as a test for difference in mean, since it is distribution-free,

and is generally considered at least as powerful as T-Test which is a parametric difference-in-

mean test that is based on the assumption of data with the Normal distribution. Steps for Mann

Whitney analysis include first sorting idle and attack data into one stream. Then the rank of the
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data from the same group (idle or attack) are summed together, producing the Rank Sum result.

Then the Rank Sum results from two data groups are compared.

Autocorrelation analysis is used to detect a change in data's self-correlation pattern over

time. An autocorrelation is a correlation of the data series with itself, lagged by a certain time or

number of observations. This statistical analysis allows the data to be viewed in another

dimension of its self-correlation structure (in a form of autocorrelation plot) rather than simple

time series plots, thus helps in detection of subtle change even when it is not visible by mere

graphical analysis. The autocorrelation plots are also an essential tool in determining the

appropriate ARIMA time series model, which is used in this study to define attack data model or

norm data model.

STATISTICA Version 7.0 is used as the analysis tool to perform both Man Whitney U

test and Autocorrelation analysis. For Man Whitney U test, the rank sum, which we use as a

statistical feature, from each data group of idle and attack are compared to determine statistical

significance of difference.

When data samples are larger than 20, such as almost all of the idle and attack datasets in

this studies, the U statistics sampling distribution approaches the Normal distribution, and will

be presented along with an Z value from the Normal distribution and the p-value [ 1 ].

For a smaller sample size, the exact probability of the particular U statistics is calculated.

For any variable with statistical significance in Mann Whitney U test, we use the difference in

mean as a data characteristic. If the same change in mean does not appear in the comparison of

idle and norm data, we use this as a unique attack characteristic.

For autocorrelation analysis, 1-lag up to 10-lag autocorrelations are analyzed. The

autocorrelation coefficients are accompanied by the respective p-values. The total numbers of
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lags with statistically significant autocorrelation coefficient are used as a degree of

autocorrelation of a variable (which we use as attack-norm feature). For example, if all the 10

lags are autocorrelated with statistical significance, then we mark the variable as highly

autocorrelated (AH in Tables 4.1-4.3, where A stands for autocorrelation and H stands for high).

On the other hand, if none of the 10 lags are significant, the variable is considered not-

autocorrelated (AL, where A stands for autocorrelation and L stands for low). For the variable

with 1 to 9 significant autocorrelations out of 10 autocorrelations, we use (AI). The changes in

the level of autocorrelation between idle data and attack data are then considered a data

characteristic. If the same change in autocorrelation does not appear between idle data and norm

data, we consider this as a unique attack characteristic.

Tables 4.1-4.3 show examples of characteristics of attack, text editing norm, and web

browsing norm respectively. The examples are from 4 variables among over 400 variables that

have a change in autocorrelation during the attack and the two norm conditions from the idle

condition. In these tables, "A" denotes an autocorrelation characteristic, while "diffO" denotes a

difference-in-mean characteristic. For example, In Table 4.1, the variable, "Processor(0)\% Cl

Time", has an increase in degree of autocorrelation, (AL, AH), from not-autocrrelated (AL)

under the idle condition to highly autocorrelated (AH) under the attack condition. The same

variable also has an increase in mean, noted as diff(+), from the idle condition to the attack

condition.
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Table 4.1. Attack data characteristics for the Ettercap attack

AL, AH
Processor(O)\% CI Time diff(+)
Processor(O)\% DPC Time AL, Al
Processor(O)\% Idle Time AL, Al
Processor(O)\% Processor Time AL, Al

Table 4.2. Norm data characteristics for the text editing norm.

AL, AH
Processor(O)\% C1 Time diff(-)

AL, Al
Processor(O)\% DPC Time diff(-)

AL, AH
Processor(O)\% Idle Time diff(-)

AL, AH
Processor(O)\% Processor Time diff(+)

Table 4.3. Norm data characteristics for the web browsing norm.

AL, AH
\\ALPHA02-VICTIM\Processor(O)\% C1 Time diff(-)
\\ALPHA02-VICTIM\Processor(O)\% DPC Time AL, Al

AL, AH
\\ALPHA02-VICTIM\Processor(O)\% Idle Time diff(-)
\\ALPHA02-VICTIM\Processor(O)\% Processor AL, AH
Time diff(+)

From Table 4.1-4.3, we can see that the "diff(+)" characteristic in "Processor(O)\% CI

Time" of the Ettercap attack does not appear in any of norm data characteristics for the same

variable, and therefore we discover a unique attack characteristic of the Ethercap attack. Such

unique attack characteristics leads to the definition of an attack data model, which is discussed in

Chapter 5.

4. An Example: Ettercap Attack Profile and Selected Data Characteristics
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An attack profile reveals the cause-effect chain of activities, state changes and

performance changes during an attack, as discussed in Chapter 1. Figure 4.2 shows the Etthercap

attack profile and the potential detection sensors that can be built based on attack data

characteristics which are discovered to be related to various points of the cause-effect chain.

These attack data characteristics are listed below.

Ettercap Attack Profile

(A) Victim and other machines on the (A)Victim constantly received ARP responses (A)Victim unknowingly sends all outgoing

network respond to ARP requests from containing IP address of other computers on packets to attacker machine, and victim's

attacker, asking for MAC addresses that the network, and with attacker's MAC incoming packets have been sent to attacker

belong to specific IP addresses. address instead, and updated its ARP table machine before the attacker routes them to the
accordingly. correct destinations

S 1,$2,$3
S1,S2,$3 SI,S2,$3

I I
* I

(S) Availability of (S) Availability of (S) Availability of (S) Availability of ,
network interface CPU resource is network interface CPU resource is
resource is affected. affected. Victim uses resource is affected. Victim (S) Confidentiality of (S) Integrity of network

Victim uses available resources affected. Victim uses available network data is data is compromised.

available resources to process attacker's uses available resources to compromised. Victim's Victim's packets, both

to process attacker's ARP request resources to process attacker's data, both incoming incoming and outgoing

ARP request process attacker's ARP response and outgoing have been may be dropped by

ARP response viewed by attacker attacker, thus victim's
send or receive data or communication is
packets from other interrupted.
machines as it
sunnosed to.

-- V

(P)Timeliness of (P)Timeliness of (P)Timeliness of (P)Timeliness of I - -.
network interface is CPU is affected, due network interface CPU is affected,

affected, due to an to an increase in is affected, due to due to an increase (P) Precision of (P) Accuracy of

increase in network processes. an increase in in processes. network data is network data is

traffic, network traffic. compromised, compromised.
due to Due to victim's both
unreachable data incoming and
or packets in outgoing data have
communications, been passed through

attacker, thus the
content or format
maybe changed by
attacker

Sensor Feature and
number Variable Characteristic
S1 Network lnterface\Packets/sec AL, Al A = Activity l Temporal Link

S2 Network lnterface\Packets Received/sec AL, Al S = State - - -I. Causal Link

S3 Network lnterface\Bytes Received/sec AL, Al P = Performance

Figure 4.2. Ettercap attack profile.
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1. AL, AI of Network Interface lPackets/sec. This data variable measures the rate that the

packets are sent and received on the network interface. AL, Al indicates that the variable

has an increase in autocorrelation from not-autocorrelated to somewhat autocorrelated (2-

9 lags of significant autocorrelation).

2. AL, AI of Network Interface Packets Received/sec. This data variable measures the rate

that the packets are received on the network interface. AL, Al indicates that the variable

has an increase in autocorrelation from not-autocorrelated to somewhat autocorrelated (2-

9 lags of significant autocorrelation).

3. AL, AI of Network Interface\ Bytes Received/sec. This data variable measures the rate of

bytes of the incoming packets on the network interface. AL, Al indicates that the variable

has an increase in autocorrelation from not-autocorrelated to somewhat autocorrelated (2-

9 lags of significant autocorrelation).

5. Selected Attack Data Characteristics of Eleven Attacks

Table 4.4 gives a list of 11 attacks whose data are collected and analyzed for discovering attack

data characteristics. Table 4.5 lists a set of selected variables which reveal attack data

characteristics. Table 4.6 provides the summary of selected attack data characteristics which are

used to build sensor models for cyber attack detection and identification, which are described in

Chapter 5. These variables and corresponding attack data characteristics are selected because

they can be well explained in associated attack contexts.
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Table 4.4. List of 11I attacks in this study.

Attack
Number Attack Name
1 NMAP
2 Hardware Keylooger
3 EtterCap
4 Nessus
5 Software Keylogger
6 Remote Dictionary
7 Rootkit
8 Apache
9 War(FTP)
10 ProcessTable

DOS Massive Amount of
11I Traffic

Table 4.5. List of selected data variables.

Var # Variable Name
1 TCP\Segments/sec
2_ IP\Datagrams/sec
3_ IP\Datagrams Received Delivered/sec
4 Network Interface\Packets/sec
5 IP\Datagrams Sent/sec
6 TCP\Connections Passive
7_ Processor(0)\DPCs Queued/sec
8 Network Interface\Packets Received/sec
9 1Network Interface\Bytes Received/sec

10 Process( Total)\Page Faults/sec
11_ Process(services)\1O Write operations/sec
12_ System\File Control Operations/sec
13 System\Context Switches/sec
14_ Memory\Page Faults/sec
15 Memory\Committed Bytes
16_ Process(war-ftpd)\Page File Bytes
17 Process(war-ftpd)\ Working Set
18_ LogicalDisk(C:)\Avg. Disk Queue Length
19_ Memory\ Write Copies/sec
20_ Process( Total)\Private Bytes
21 1Processor( Total)\% DPC Time
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Table 4.6. A summary table of selected attack characteristics to be used for building sensor

models.

Attack Number
Var
# 1 2 3 4 5 6 7 8 9 10 11

Al,
1 AH AH,AH

Al,
2 AH

Al,
3 AH

Al, AL,
4 AH Al AI,AH AH,AH AH,AL AI,AH
5 Diff(+) AH,AL
6 Diff(+) Diff(+)

AH,
"7 Al

AL,
8 Al AI,AH

AL,
9 Al

10 AH, Al
11 AL,AH
12 AL,AH
13 AL,AH
14 AH,AH
15 Diff(+)
16 Diff(+)
17 Diff(+)
18 AH,AL
19 AH,AI
20 Diff(+)
21 AI,AH

6. Summary

Our data analysis allows us to discover the data, features and corresponding

characteristics to identify an attack or normal activity. These data variables, statistical features

and attack or norm characteristics together define the observables necessary to distinguish
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between the attacks in our study. This analysis leads us to a set of data, features and

characteristics with which we can build individual sensor models to detect each observable.

Reference

1. Siegel, S. (1956). Nonparametric Statistics for the Behavioral Sciences.

McGraw-Hill Book Company, Inc., New York.
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Chapter 5: Sensor Models for Cyber Attack Detection and Identification

This chapter describes mean- and autocorrelation-based cuscore sensor models we

develop using the attack-norm separation approach using the discovered attack data

characteristics.

1. Cyber Attack Detection Techniques and Models

To compare our attack-norm approach with the two conventional approaches of signature

recognition, we select a specific technique from each approach for testing. We select the

Artifical Neural Network (ANN) technique to represent the signature recognition approach, the

EWMA control chart technique to represent the anomaly detection approach, and Cuscore

statistic models to represent the attack-norm separation approach. Hence, for each variable

showing an attack data characteristics, an ANN model, an EWMA control chart model and a

Cuscore statistic model are built to examine their detection performance in comparison. This

section describes these techniques and models.

1.1 Artificial Neural Networks (ANN)

ANN is used as a technique for the conventional approach of signature recognition. ANN

is an interconnected group of artificial neurons that uses a mathematical or computational model

for information processing based on a connectionist approach to computation. In this study the

back propagation learning algorithm is used for designing the artificial neural network having

one input (user defined which ranges from 0 to maximum observation of the data variable under

test), one output (describing the input as attack when close to 1 or norm when close to 0 based on

the classification of the trained network) and a hidden layer with 20 units as shown in Figure 5.1.
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An ANN in this study computes all the outputs using the sigmoid threshold of the inner product

of the corresponding weight and input vectors.

The procedure is as follows. Attack data from Runl in Table 3.2 and the first half of

norm data from Runs 2 and 3 are used for training an ANN for a given variable. The norm data

and attack&norm data from runs 2 and 3 in Table 3.2 are used for testing. Training is done by

using a statistical tool called the STATISTICA Neural Networks which includes the back

propagation algorithm with time-varying learning rate, case-presentation order shuffling and

additive noise for robust generalization. The learning rate used for this study is 0.01.

STATISTICA Neural Networks automatically retains a copy of the best network discovered,

which can be retrieved at the press of a button. When training has finished based on the specified

training error value of 0.01, performance against the test data can be checked. Testing is done by

running each data observation in the testing data and then determining if the ANN output values

is signaled as an attack or norm based on a signal threshold. The signal threshold is set up during

the training to minimize the classification error of the ANN.

20 units in the bidden layer

In Nd l output

Figure 5.1. ANN hidden layer with 20 units.
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1.2 EWMA Control Chart

An EWMA control chart [1-2] is an anomaly detection technique and is typically used

when it is desirable to detect out-of-control situations. Many intrusions manifest in dramatic

changes in the intensity of events occurring in information systems. Because of the ability of

exponentially weighted moving average (EWMA) control charts to monitor the rate of

occurrences of events based on the their intensity [1-2], it is considered to be a very good

technique to represent the anomaly detection when comparing it with the Cuscore detection

model.

The procedure is as follows. In the training phase, z(O) in Equation 1 is initialized to the

average of x's (time series data) from the training data. For each x(i) in the training data,

EWMA [1-2] statistic, z(i) , is calculated using the equation given below:

z(i) = )x(i) + (1- 2)z(i-1) (5.1)

The A is the parameter to determine the EWMA statistic, z(i) is the EWMA statistic for the

observation #i and x(i) the input data for training.

For each x(i) in the training data, the one-step-ahead prediction error e(i) is calculated

using the equation given below:

e(i) = x(i) - z(i-1) (5.2)

and e2(0) being the average of the sum of squared errors, e2(i). The data for the training phase

is obtained from the first half of the norm data from run 2 and run 3 in the Table 3.2 from the

column two indicating the web browsing norm and text editing norm respectively. Data for the

testing phase is initialized as z(O) is average of z(i)'s from the training data. In the testing phase

for each x(i) in the testing data, EWMA statistic is calculated as:

z(i) = 2x(i) + (1- 2)z(i-1) (5.3)
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oae2 (i) is estimated by calculating a smoothened variance using the equation below:

o0,2 (i) = Oe(i)2 + (1 0)o-,2 (i - 1) (5.4)

The 0e2 (i) is the square of the estimated standard deviation of e(i). 0 is the parameter to

represents the smoothened variance of e(i).

UCLx(i) and LCLx(i) are computed as:

UCLx(i) z(i-1) + L o-e (i- 1) -upper control limit (5.5)

LCLx(i) = z(i-1) - L -- , (i -1) -lower control limit (5.5)

The UCLx(i) is the upper control limit and LCLx(i) is the lower control limit and L is the control

limit. If x(i) does not fall in [LCL, UCL], it is detected as an attack. The data for the testing

phase is obtained from the second half of the norm data and the attack&norm data from runs 2

and 3 in Table 3.2. The parameters for EWMA are defined in Table 5.1. The parameter L is

chosen to be three because it will result in lower false alarm and a larger control limit.. 0 and 2

are 0.3 because previous work by Ye and her colleagues [1-2] show that this combination of

values results in the least false alarms and good hit rate. The software used for EWMA is

Microsoft excel.

Table 5.1. Parameters of EWMA control charts.

L A 0

3 0.3 0.3

1.3 Sensor Model Using Cuscore Statistics

Cuscore statistic [3] is used to detect the attack in the presence of the norm activity at the

same time based on the attack-norm separation approach. The detection process goes through
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three steps. First, attack and norm models are defined. Second, the norm cancellation is carried

out in the Cuscore statistic model by subtracting the norm model from the testing data (attack

and norm mixed) as shown in Equation (5.6):

(5.6)

wheref(t) is the norm model, g(t) is the attack model, and yt is an observation of the testing data

at time t. Lastly the residual data after norm data filtering is used to detect the attack by

multiplying it with the attack model, g(t), as shown in Equation(5.6). The attack data model and

the norm data model are first built from the discovered characteristics of attack data and norm

data before applying equation 5.6.

The presence of an attack is identified by the substantial slope change of slope in the line

of Cuscore values. In this study, the Cuscore before a sharp slope change is used as the threshold

value of detecting an attack. An observation is signaled for an attack whenever the Cuscore value

for this observation is greater than the threshold value. The details of building Cuscore sensor

models are provided in the following sections.

1.3.1 Definition of Attack and Norm Models

To build a norm and attack model for variables with mean difference, we simply use a

statistical mean of the testing data as a model. However, for the variables with change in

autocorrelation, the best fitted ARIMA time series model [4] needs to be determined.

Before fitting any ARIMA models, data transformation may be done in order to remove

any seasonality, trends or outliers. After that, many ARIMA models are fitted to the data for
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identifying the appropriate ARIMA time series model. The ARIMA model, which produces the

lowest Mean Square Error between the original data time series and the time series reconstructed

by ARIMA is selected as the most appropriate ARIMA model for the data.

The equation for ARIMA model [4] is given by:

Y1 = 01Y,_I + 0 2 Y'_ +e, - 1e,_, -0 2e,- 2. (5.7)

where Y, is the transformed rating at time t,

01 is the portion of previous rating carried over to the rating at time t,

e, is the shock at time t,

01 is the moving average coefficient.

For example, the normal and attack model for Network Interface\Bytes Received/sec

variable in the Ettercap attack are constructed using the ARIMA model, specifically ARMA(1,

2), in Equations (5.8), (5.9), (5.10):

Y = 0.11398Y - i + e, - 0.7570 e,_1 - 0.6599e,- 2  (5.8)

The first term, 0.11 398Y, - i, represents the Auto Regressive (AR) part of the model, while last

three terms represents the Moving Average (MA) part of the model.

The actual ARIMA equation representing the text editing norm model, which is an

ARMA (1, 1), is given below:

Y, = -0.6867Yt - i + e, - 0.5773 e, - 1 (5.9)

The first term, -0.6867Y, - i, represents the Auto Regressive (AR) part of the model, while

second and third terms represents the Moving Average (MA) part of the model.

The actual ARIMA equation representing the web browsing norm model, which is an

ARMA (1, 1), is given below:
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Y, = 0.47883Y, -1 + e, + 0.99185 e, - j (5.10)

Again, the first term, 0.47883Y,-i, represents the Auto Regressive (AR) part of the

model, while last two terms represents the Moving Average (MA) part of the model.

1.3.2 Verification of Attack and Norm Model

To verify the selected attack and norm models for variables with mean difference, the

time series data are plotted, and the difference in statistical mean between the two data sets is

checked.

However, verifying attack and norm model for variables with autocorrelation change is

more complicated. This involves plotting the variable's Autocorrelation Function plot (ACF) and

Partial Autocorrelation Function plot (PACF). The selected ARIMA model is then checked with

the pattern shown in the two plots to see whether the ACF and PACF plots agree with the chosen

model. For example, if the ACF shows a negative spike at lag 1 and PACF shows exponential

decay of negative spikes, the appropriate ARIMA model is likely to be an ARIMA (0, 0, 1), with

a positive Moving Average (MA) coefficient. If the ACF shows an exponential decay with

positive spikes and PACF shows 1 positive spike at lag 1, the appropriate ARIMA model is

likely to be ARIMA (1, 0, 0) with a positive Auto Regressive (AR) coefficient.

The ACF and PACF plots for Network Interface\Bytes Received/sec variable in the

Ettercap attack for attack, text editing norm and web browsing norm are shown in Figures 5.2 to

5.7.

1. Attack model for Network Interface\Bytes Received/sec variable in Ettercap attack:
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Autocereralon FLution
\ALPHA02-VMCTIMNetrktnterface(Intet[R] PRO_1000 MT NetwrkComton - PaWet

Scheduler Miniport)WB,4es Receied/sec: D(-10)
(Standard errors are ahite-nose estimates)

Lag Corr. S.E. Q p

1 +.701 .0371 '71 356.4 0.000

2 +.435 .0371 493.8 0.000
3 +.139 .0371 ] 507.9 0.000

4 +.089 .0371 513.6 0.000

5 +.029 .0370 . 514.2 0.000

6 -. 009 .0370 . . . 514.3 0.000

7 -. 044 .0370 . . 1 515.7 0.000

8 -. 212 .0370 548.7 0.000

9 -. 371 .0369 . 649.5 0.000

10 -. 498 .0369 . .831.8 0.000

11 -. 347 .0369 920.1 0.000

12 -. 209 .0369 I 952.4 0.000

13 -. 078 .0368 956.8 0.000

14 -. 055 .0368 959.1 0.000

15 -. 014 .03689| 959.2 0.000
0 -- Conf. Unit
-1.0 -0.5 0.0 0.5 1.0

Figure 5.2. Autocorrelation Function plot (ACF) for the transformed Network Interface\Bytes

Received/sec under the attack condition.

Partial AL•• orrelation Funcion
\ALPHA02-VCTIM\Netvworklrtaface(Irtel[R] PRO_-100 MT NetwkConnection- Paclet Scheduler

Miniport)\Bytes Receivl/sec: D(-10)
(Standard errors assumeAR order of k-1)

Lag Corr. S.E.

1 +.701 .0372

2 -. 111 .0372

3 -. 243 .0372

4 +.255 .0372

5 -. 092 .0372
6 -. 124 .0372
7 +.094 .0372

8 -. 403 .0372

9 -. 191 .0372 EEP I
10 -. 013 .0372 ii
11 +.196 .0372

12 -. 071 .0372

13 -. 046 .0372 . . I

14 +.070 .0372

15 +.008 .0372 I I

0 - -Conf. Uit
-1.0 -0.5 0.0 0.5 1.0

Figure 5.3 Partial Autocorrelation Function plot (PACF) for the transformed Network

Interface\Bytes Received/sec under the attack condition.

In Figure 5.2, ACF shows an exponential decay of positive spikes, while in Figure 5.3

PACF shows an oscillating decay of positive and negative spikes. This is agreeable to the
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ARMA(1, 2) model with a positive Autoregressive (AR) coefficient and negative' Moving

Average (MA) coefficients.

2. Text editing norm model for Network Interface\Bytes Received/sec variable in the

Ettercap attack:

Autoconrelation Function
\\ALPHA02-VICTIMNetwork tnterface(Intel[R] PRO 1000 MT Network Connection - Packet

Scheduler tViniport)\Bytes Received/sec: D(-32); D(-30); D(-10)

(Standard errors are white-noise estimates)
Lag Corr. S.E. Q p

1 -. 042 .0658 I . . .40 .5256

2 +.226 .0656 12.22 .0022

3 -. 059 .0655 . l I 13.03 .0046

4 -. 000 .0654 . 13.03 .0111

5 -. 000 .0652 I I 13.03 .0231I i
6 -. 000 .0651 I 13.03 .0425

7 +.029 .0649 I 13.24 .0665

8 -. 113 .0648 16.28 .0386

9 +.021 .0646 16.36 .0594

10 -. 292 .0645 1 36.87 .0001

11 +.021 .0643 Ii 36.97 .0001

12 -. 112 .0642 40.05 .0001

13 +.030 .06401 40.26 .0001

14 +.000 .0639 40.26 .0002

15 +.000 .0637 ' 40.26 .0004

0 0 - - Conf. Limit
-1.0 -0.5 0.0 0.5 1.0

Figure 5.4. Autocorrelation Function plot (ACF) for the transformed Network Interface\Bytes

Received/sec under the text editing norm condition.
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Partial Autocorrelation Function
\XALPHA02-VICTIMNetwork Interface(Intel[R] PRO 1000 MT Network Connection -

Packet Scheduler Mniport)\Bytes Received/sec: D(-32); 0(-30); D(-10)
(Standard errors assume AR order of k-I)

Lag Corr. S.E.

1 -. 042 .0662

2 +.224 .0662 j M. .

3 -. 045 .0662

4 -. 057 .0662

5 +.023 .0662

6 +.011 .0662 I
7 +.022 .0662

8 -. 120 .0662

9 +.005 .0662 I
10 -. 253 .0662 F e "

11 -. 007 .0662 I
12 -. 000 .0662 I
13 -. 001 .0662

14 +.013 .0662

15 -. 003 .0662
0 Conf. Limit

-1.0 -0.5 0.0 0.5 1.0

Figure 5.5 Partial Autocorrelation Function plot (PACF) for the transformed Network

Interface\Bytes Received/sec under the text editing norm condition.

In Figure 5.4 ACF shows an oscillating decay of negative and positive spikes, and in

Figure 5.5 PACF also shows the same oscillating pattern. This confirms the ARMA (1, 1) model

with negative coefficients for both Auto Regressive (AR) and Moving Average (MA) parts is

appropriate for the data.

3. Web browsing norm model for Network Interface\Bytes Received/sec variable in

Ettercap attack:
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Autocorrelation Function

\ALPHA02-VICTI M\Network Interface(Intel[R] PRO_1000 MT Network Connection -
Packet Scheduler Miniport)\Bytes Received/sec: D(-32); D(-30)

(Standard errors are whMte-noise estimates)
Lag Corr. S. E. Q p
1 +.250 .0644 15.09 0001
2 +.445 .0643 63.09 .0000
3 +.284 .0641 82.69 .0000
4 +.287 .0640 102.8 0.000
5 +.338 .0639 130.8 0.000
6 +.181 .0637 138.9 0.000
7 +.185 .0636 147.4 0.000
8 +.101 .0635 ! I 149.9 0.000
9 +.183 .0633 I 158.3 0.000

10 +.113 .0632 I 161.5 0.000
11 +.081 .0630 I 163.1 0.000
12 +.066 .0629 164.. 0
13 +.047 .0628 164.8 0.000
14 +.041 .0626 I 165.2 0.00015 +.014 .0625 ' 165.3 0.000
16 -. 005 .0623 ' 165.3 0.000
17 +.018 .0622 I | 165.4 0.000
18 -. 055 .0621 166.1 0.000
19 -.033 .0619 166.4 0.000
20 -.089 .0618 168.5 0.000
21 -. 136 .0616 I 173.3 0.000
22 -. 048 .0615 174.0 0.000
23 -. 160 .0614 180.8 0.000
24 -. 145 .0612 186.4 0.000
25 -. 246 .0611 202.6 0.000

26 -. 201 .0609 213.4 0.000
27 -. 207 .0608 225.0 0.000
28 -. 288 .0606 247.5 0.000
29 -. 171 .0605 255.5 0.000
30 -. 642 .060• d68.7 0.000 Conf. Limit

-1.0 -0.5 0.0 0.5 1.0

Figure 5.6 Autocorrelation Function plot (ACF) for the transformed Network Interface\Bytes

Received/sec under the web browsing norm condition.

Partial Autocorrelation Function

\\ALPHA02-VIC1MANetwork Interface(Intel[R] PRO_1000 MT Network Connection - Packet
Scheduler Miniport)\Bytes Received/sec: D(-32); D(-30)

(Standard errors assume AR order of k-i)
Lag Corr. S.E.
1 +.250 .0648
2 +.408 .0648
3 +148 .0648
4 +.069 .0648
5 +.175 .0648
6 -. 038 .0648
7 -. 074 .0648
8 -. 070 .0648
9 +.079 .0648 1

10 +.016 .0648
11 -. 044 .0648
12 -. 014 .0648
13 +.005 .0648
14 -. 036 .0648
15 -. 032 .0648
16 -.018 .0648 E
17 +.041 .0648 3
18 -. 069 .0648
19 -. 046 .0648
20 -. 048 .0648
21 -. 112 .0648
22 +.038 .0648
23 -. 043 .0648
24 -. 085 .0648
25 -. 141 .0648
26 -. 057 .0648 I
27 -. 022 .0648
28 -. 132 .0648
29 +.055 .0648
30 -. 542 .0648 1 - -______________________________--Conf. Limit

-1.0 -0.5 0.0 0.5 1.0

Figure 5.7 Partial Autocorrelation Function plot (PACF) for the transformed Network

Interface\Bytes Received/sec under the web browsing norm condition.
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In Figure 5.6 ACF shows an exponential decay of positive spikes, while in Figure 5.7

PACF also shows an exponential decay of positive spikes. This is reasonable for the ARMA (1,

1) model with positive coefficients for both Auto Regressive (AR) and Moving Average (MA)

parts.

1.3.3 Sensor Model Using Cuscore Statistics

After verification, the attack and norm models are implemented into an Cuscore statistic

model to detect the attack occurring in the same time as normal user activity. The following

figures show Cuscore statistic charts for the Ettercap attack with normal activity data as the

background noise data. The first 300 data observations are the norm data. Starting from the 3 0 1st

observation, the data are mixed with both attack and normal activities.

Line Plot (Spreadsheet8 10v'925c)
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a) Web browsing norm and the Ettercap attack (lst detection at observation 307)
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Line Plot (Spreadsheet16 10v*923c)
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b) Text editing norm and the Ettercap attack (1st detection at observation 314)

Figure 5.8. Cuscore charts for the variable, Network Interface\Packets Received/sec.
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a) Web browsing norm and the Ettercap attack (I"t detection at observation 306)
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Line Plot (Spreadsheet14 10v'923c)
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b) Text editing norm and the Ettercap attack (Ist detection at observation 318)

Figure 5.9. Cuscore charts for the variable, Network Interface\ Packets/sec.
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a) Web browsing norm and the Ettercap attack (1st detection at observation 306)
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Une Plot (Spreadsheet24 10V923c)
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b) Text editing norm and Ettercap attack (1" detection at observation 307)

Figure 5.10. Cuscore charts for the variable, Network Interface\ Bytes Received/sec.

2. Performance of ANN, EWMA and Cuscore Models

In this section we give the performance comparison of our Cuscore sensor models with

ANN models and EWMA control chart models for the selected data variables described in

Chapter 4 for each of 11 attacks. A total of 11 attacks, each in combination with 2 norm

activities, are tested and the results are summarized using two performance measures: false

alarms and the first signal. False alarms compute the number of observations in the norm data

(the first 300 observations of the testing data) that are signaled an attack by a model. The first

signal is the first data observation in the attack&norm data when an attack is detected.

Tables 5.2-5.23 give the performance results of our autocorrelation- and mean-based

Cuscore models, ANN models and EWMA models in comparison. The false alarm ratio is

shown as the number of observations out of the first 300 observations in the testing data, which

are the norm data. For example, in Table 5.2 for the variable IP\ Datagrams/sec, the false alarm
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ratio of the Cuscore model is 0/300. This means that the Cuscore model for this variable

produces zero false alarms in the first 300 observations of the testing data.

The first signal column in the result tables shows the observation number of the first

observation which is signaled as attack over the total number of observations in the mixed

attack&norm data. The first signal is a measure of earliness in detection. For example, in Table

5.2 for the variable, IP\ Datagrams/sec, the first signal ratio of the Cuscore model is 2/218. This

means that the Cuscore model detects an attack at the 2nd observation from the attack starting

point, and the total number of the attack&norm data observations is 218.
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Table 5.2. Performance results for the test condition: NMAP with text editing.

Cuscore Sensor EWMA
ANN

Model Control Chart

Sensor # Variable False
False First False First First

Alarm
Alarms Signal Alarms Signal Signal

S

1 IP/Datagrams/sec 0/300 2/218 4/300 3/218 1/300 4/218

0/300 4/218
2 IP/Datagrams Received Delivered/sec 7/300 1/218 3/300 1/218

2/300 1/218

3 Network Interface/Packets/sec 0/300 3/218 3/300 4/218 2/300 5/218

4 TCP/Segments/sec 0/300 2/218 0/300 1/218 1/300 1/218

5 IP/Datagrams Sent/sec 0/300 1/218 3/300 4/218 3/300 2/218

6 TCP\Connections Passive 0/300 42/218 0/300 42/218 0/300 42/218

In Table 5.2 for most variables, the Cuscore detection models have zero false alarm and

the better first signal performance than ANN and EWMA. For the variables with the same first

signal, the Cuscore models produce fewer or same false alarms than ANN and EWMA.
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Table 5.3. Performance results for the test condition: NMAP with web browsing.

Sensor # Variable Cuscore Sensor ANN EWMA

Model Control Chart

False First False First False First

larms Signal Alarms Signal Alarm Signal

5

1 IP/Datagrams/sec 0/300 3/215 6/300 5/215 3/300 4/215

2 IP/Datagrams Received Delivered/sec 0/300 2/215 7/300 2/215 2/300 4/215

3 Network Interface/Packets/sec 0/300 3/215
2/300 2/215 2/300 2/215

2/300 1/215

4 TCP/Segments/sec 0/300 2/215 4/300 3/215 3/300 4/215

5 IP/Datagrams Sent/sec 0/300 3/215
2/300 2/215 2/300 2/215

2/300 2/215

6 TCP\Connections Passive
0/300 8/215 0/300 8/215 0/300 8/215

In Table 5.3 for most variables, the Cuscore detection model has zero false alarm and

athe better first signal performance than ANN and EWMA. For the variables with the same first

signal, the Cuscore models produce fewer or same false alarms than ANN and EWMA. For the

variables with the same false alarm rate, the Cuscore models have the better first signal

performance than ANN and EWMA.
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Table 5.4. Performance results for the test condition: Ettercap with text editing.

Sensor # Variable Cuscore ANN EWMA

Sensor Model Control Chart

False First False First False First

larms Signal Alarm Signal Alarm Signal

s s

1 Network Interface Packets/sec
0/300 18/623 37/300 16/623 13/300 12/623

Network Interface Packets Received/sec 0/300 14/623
37/300 16/623 13/300 12/623

3/300 12/623

3 Network Interface Bytes Received/sec 0/300 7/623 36/300 16/623 14/300 12/623

In Table 5.4 for one variable, the Cuscore model has zero false alarm and the better first

signal detection than ANN and EWMA. For the variable with the same first signal, the Cuscore

model presents much fewer false alarms than ANN and EWMA.
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Table 5.5. Performance results for the test condition: Ettercap with web browsing.

Sensor # Variable Cuscore ANN EWMA

Sensor Model Control Chart

False First False First False First

Alarms Signal Alarm Signal Alarm Signal

s

1 Network Interface Packets/sec
0/300 6/627 3/300 27/627 14/300 6/627

Network Interface Packets Received/sec 0/300 7/627 3/300 27/627 12/300 12/627

3 Network Interface Bytes Received/sec 0/300 6/627 3/300 27/627 15/300 6/627

In Table 5.5 for one variable, the Cuscore model has zero false alarm and the better first

signal performance than ANN and EWMA. For the variables with the same first signal, the

Cuscore models produce zero false alarms.
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Table 5.6. Performance results for the test condition: Hardware key logger with text editing.

Sensor Variable Cuscore ANN EWMA Control

# Sensor Model Chart

False First False First False First

Alarms Signal Alarms Signal Alarms Signal

1 Processor(O)\DPCs Queued/sec

0/300 74/614 218/300 >614 37/300 112/614

In Table 5.6 the false alarms of ANN and EWMA are much higher than those of the

Cuscore models. Moreover, ANN cannot detect the attack for Processor(O)\DPCs Queued/sec

variable. The first signal, ">614", means that there is no attack signal identified on all 614

observations under the attack&norm condition.
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Table 5.7. Performance results for the test condition: Hardware key logger with web browsing.

Sensor Variable Cuscore ANN EWMA Control

Sensor Model Chart

False First False First False First

Alarms Signal Alarms Signal Alarms Signal

1 rocessor(O)\DPCs Queued/sec 0/300 14/614 231/300 >667 21/300 127/667

In Table 5.7 the false alarms of ANN and EWMA are much higher than those of the

Cuscore models. Moreover, ANN cannot detect the attack for Processor(0)\DPCs Queued/sec.

The first signal, ">677", means that there is no attack signal identified on all 677 observations

under the attack&norm condition.
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Table 5.8. Performance results for the test condition: Nessus with text editing.

Sensor Variable Cuscore ANN EWMA

# Sensor Model Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarm Signal

S

Network Interface/Packets/sec
0/300 4/431 98/300 21/431 21/300 11/431

Network Interface/Packets
0/300 4/431 98/300 21/431 21/300 11/431

Received/sec

In Table 5.8 ANN models produce high false alarms. The Cuscore models have zero false

alarm and the better first signal performance than ANN and EWMA.
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Table 5.9. Performance results for the test condition: Nessus with web browsing.

Sensor Variable Cuscore ANN EWMA

SSensor Model Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarm Signal

s

Network Interface/Packets/sec

0/300 7/437 140/300 22/437 34/300 9/437

2etwork Interface/Packets

Received/sec 0/300 7/437 140/300 22/437 34/300 9/437

In Table 5.9 ANN models produce very high false alarms. The Cuscore models have zero

false alarm and the better first signal performance than ANN and EWMA.
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Table 5.10. Performance results for the test condition: Software key logger with text editing.

Sensor # ariable Cuscore Sensor ANN EWMA

Model Control Chart

False First False First False First

Alarms Signal Alarm Signal Alarm Signal

sS

1 Process(services)\IO Write
Operations/sec 0/300 13/634 4/300 17/364 9/300 13/634

Process(_Total)\Page Faults/sec 0/300 3/634 9/300 13/634 14/300 3/634

In Table 5.10 for both variables the Cuscore models have zero false alarm, which is less

than those of ANN and EWMA. The first signal performance of the Cuscore models is

comparable to that of EWMA, but is better than that of ANN.



80

Table 5.11. Performance results for the test condition: Software key logger with web browsing.

Sensor # ariable Cuscore Sensor ANN EWMA

Model Control Chart

False First False First False First

Alarms Signal Alarm Signal Alarm Signal

I Process(services)\IO Write
Operations/sec 0/300 13/631 2/300 13/631 0/300 13/631

Process(_Total)\Page Faults/sec 0/300 3/631 18/300 4/631 20/300 3/631

In Table 5.11 for both variables the Cuscore models have zero false alarm, which is less

than those of ANN and EWMA. The first signal performance is relatively good for all three

models.
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Table 5.12. Performance results for the test condition: Remote dictionary with text editing.

Sensor # Variable Cuscore Sensor ANN EWMA

Model Control Chart

False First False First False First

Alarms Signal Alarm Signal Alarm Signal

1 Network Interface/Packets/sec
0/300 1/270 3/300 2/270 5/300 2/270

2 TCP\Segments/sec 0/300 3/270 3/300 2/270 0/300 3/270

3 TCP\Connections Passive
0/300 3/270 0/300 3/270 0/300 3/270

In Table 5.12 the false alarm rates of the Cuscore models are lower than those of ANN

and EWMA in some cases. The first signal performance of the Cuscore models is relatively good

for all three models.
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Table 5.13. Performance results for the test condition: Remote dictionary with web browsing.

Sensor # Variable Cuscore Sensor ANN EWMA .

Model Control Chart

False First False First False First

Alarms Signal Alarm Signal Alarm Signal

S 5

1 Network Interface/Packets/sec
0/300 3/270 2/300 8/270 2/300 4/270

2 TCP\Segments/sec 0/300 2/270 2/300 8/270 11/300 2/270

3 TCP\Connections Passive
0/300 2/270 0/300 2/270 0/300 2/270

In Table 5.13 the false alarm rates of the Cuscore models are lower than those of ANN

and EWMA in most cases. The first signal performance of the Cuscore models, which is

relatively good for all three models, is comparable to that of EWMA, but is mostly better than

that of ANN.
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Table 5.14. Performance results for the test condition: Rootkit with text editing.

Sensor # Variable Cuscore ANN EWMA

Sensor Model Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarms Signal

1 System\File Control

Operations/see 0/300 22/599 23/300 22/599 17/300 22/599

2 System\Context
0/300 1/599 14/300 22/599 9/300 1/599

Switches/sec

In Table 5.14 for both variables the Cuscore models have zero false alarm, which is less

than those of ANN and EWMA. The first signal performance of the Cuscore models is

comparable to that of EWMA and ANN.
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Table 5.15. Performance results for the test condition: Rootkit with web browsing.

Sensor # Variable Cuscore Sensor ANN EWMA

Model Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarms Signal

1 System\File Control

Operations/sec 0/300 3/623 22/300 3/623 17/300 3/623

2 System\Context
0/300 3/623 24/300 3/623 18/300 3/623

Switches/sec

In Table 5.15 for both variables the Cuscore models have zero false alarm, which is less

than those of ANN and EWMA. The first signal performance of the Cuscore models is

comparable to that of EWMA and ANN.
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Table 5.16. Performance results for the test condition: Apache with text editing.

Sensor Variable Cuscore Sensor ANN EWMA

SModel Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarm Signal

s

1 Memory\Page Faults/sec
0/300 1/120 1/300 1/120 3/300 1/120

Network Interface\Packets/sec
0/300 1/120 13/300 1/120 14/300 1/120

3 IP\Datagrams Sent/sec
0/300 1/120 13/300 1/120 14/300 1/120

4 Memory\Committed Bytes
0/300 1/120 12/300 1/120 12/300 1/120

In Table 5.16 for all variables the Cuscore models have zero false alarms, which is less

than those of ANN and EWMA. The first signal performance is relatively good for all three

models.
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Table 5.17. Performance results for the test condition: Apache with web browsing.

Sensor Variable Cuscore Sensor ANN EWMA

SModel Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarm Signal

s

I Memory\Page Faults/sec
0/300 1/122 0/300 1/122 1/300 1/122

Network Interface\Packets/sec
0/300 1/122 15/300 1/122 16/300 1/122

3 IP\Datagrams Sent/sec
0/300 1/122 15/300 1/122 16/300 1/122

Memory\Committed Bytes
0/300 1/122 20/300 1/122 18/300 1/122

In Table 5.17 for all variables the Cuscore models have zero false alarm, which is less

than those of ANN and EWMA. The first signal performance is relatively good for all three

models.
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Table 5.18. Performance results for the test condition: Warftpd with text editing:

Sensor # Variable Cuscore ANN EWMA

Sensor Model Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarms Signal

1 Process(war-ftpd)\Page File
0/300 5/6 2/300 5/6 1/300 5/6

Bytes

Process(war-ftpd)\Working
0/300 5/6 1/300 5/6 0/300 5/6

Set

3 LogicalDisk(C:)\Avg. Disk
0/300 1/6 17/300 >6 12/300 >6

Queue Length

In Table 5.18 for all variables the Cuscore models have zero false alarm, which is less

than those of ANN and EWMA. The first signal performance for the variables in the Process

group is comparable to that of EWMA, and ANN. However, both ANN and EWMA cannot

detect the attack for LogicalDisk(C:)\Avg. Disk Queue Length. The first signal ">6" means that

there is no attack signal identified on all 6 observations under the attack&norm condition.
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Table 5.19. Performance results for the test condition: Warftpd with web browsing.

Sensor # Variable Cuscore ANN EWMA

Sensor Model Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarms Signal

rocess(war-ftpd)\Page File Bytes 0/300 3/6 1/300 3/6 1/300 3/6

2 Process(war-ftpd)\Working Set 0/300 2/6 1/300 2/6 1/300 2/6

3 LogicalDisk(C:)\Avg. Disk Queue
0/300 1/6 3/300 4/6 1/300 >6

Length

In Table 5.19 for all variables the Cuscore models have zero false alarm, which is less

than those of ANN and EWMA. The first signal performance for the variables in the Process

group is comparable to that of EWMA, and ANN. For LogicalDisk(C:)\Avg. Disk Queue

Length, the Cuscore model has the better first signal performance than ANN and EWMA which

cannot detect the attack in all attack&norm observations. The first signal ">6" means that there

is no attack signal identified on all 6 observations under the attack&norm condition.
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Table 5.20. Performance results for the test condition: Process Table with text editing.

Sensor Variable Cuscore ANN EWMA

# Sensor Model Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarms Signal

1 rocess(_Total)\Private Bytes 0/300 1/13 23/300 2/16 20/300 2/13

2 lemory\Write Copies/sec 0/300 2/13 8/300 2/16 5/300 2/13

In Table 5.20 for Process(_Total)\Private Bytes, the Cuscore model has zero false alarm,

which is considerably lower than those of ANN and EWMA, and the better first signal

performance. For Memory\Write Copies/sec variable with the same first signal as ANN and

EWMA, the Cuscore model has zero false alarm which is less than those of ANN and EWMA.



90

Table 5.21. Performance results for the test condition: Process Table with web browsing.

Sensor Variable Cuscore ANN EWMA

SSensor Model Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarms Signal

1 Process(_Total)\Private Bytes 0/300 1/16 19/300 5/16 14/300 4/16

Memory\Write Copies/sec 0/300 4/16 7/300 4/16 3/300 4/16

In Table 5.21 for Process(_Total)\Private Bytes, the Cuscore model has zero false alarm

which is considerably lower than those of ANN and EWMA, and the better first signal

performance. For Memory\Write Copies/sec variable with the same first signal as ANN and

EWMA, the Cuscore model has zero false alarm which is lower than those of ANN and EWMA.
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Table 5.22. Performance results for the test condition: Trinoo with text editing.

Sensor Variable Cuscore ANN EWMA

Sensor Model Control Chart

False First False First False First

Alarms Signal Alarms Signal Alarms Signal

I Network Interface/Packets/sec
0/300 1/600 2/300 2/600 0/300 2/600

2rocessorTotal)\% DPC Time 0/300 1/600 23/300 1/600 18/300 1/600

In Table 5.22 for Network Interface/Packets/sec, the Cuscore model has zero false alarm

which is considerably lower that those of ANN and EWMA, and the better first signal

performance. For Processor(_Total)\% DPC Time variable with the same first signal'as ANN

and EWMA, the Cuscore model still presents zero false alarm which lower than those of ANN

and EWMA.
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Table 5.23. Performance results for the test condition: Trinoo with web browsing.

Sensor Variable Cuscore ANN EWMA

Sensor Model Control Chart

False First False First False First

larms Signal Alarms Signal Alarms Signal

1 Network Interface/Packets/sec
0/300 1/600 2/300 2/600 2/300 1/600

2rocessor(_Total)\% DPC Time 0/300 2/600 19/300 3/600 17/300 2/600

In Table 5.23 Cuscore models show the better or same first detection performance and

lower false alarm rates than ANN and EWMA.

3. Summary

In this chapter we provide example Cuscore models developed using the attack-norm

separation approach. This work on audit data, features, characteristics, and detection models

establishes a coherent set of scientific theories and analytical techniques that enable the

automatic extraction and identification of audit data, features and characteristics for intrusion

and damage assessment.
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